NGSS Science and Engineering Practices | 7. Engaging in Argument from Exidence | Engaging in argument from evidence in K–2 builds on prior | Engaging in argument from evidence in 3–5 builds on K–2 | Engaging in argument from evidence in 6–8 builds on K–5 | Engaging in argument from evidence in
 9–12 builds on K–8 experiences and | |---------------------------------------|--|---|---|--| | | experiences and progresses to | experiences and progresses to | experiences and progresses to | progresses to using appropriate and | | Argumentation is the process by | comparing ideas and | critiquing the scientific | constructing a convincing argument | sufficient evidence and critique claims | | clusions | representations about the natural and designed world(s) | proposed by peers by citing | either explanations or solutions | and explanations about the natural and | | and solutions are reached. | | relevant evidence about the | about the natural and designed | designed world(s). Arguments may | | In science and engineering, | | natural and designed world(s). | world(s). | also come from current scientific or | | reasoning and argument based on | Identify arguments that are | * Compare and refine | Compare and critique two | Compare and evaluate competing | | evidence are essential to | supported by evidence. | | | arguments or design solutions in | | a natural phenomenon or the best | Distinguish between | evaluation of the evidence | analyze whether they emphasize | light of currently accepted | | solution to a design problem. | explanations that account for | presented. | and/or interpretations of facts | limitations (e.g., trade-offs). | | | those that do not. | reasoned judgment based on | מוש/טו ווויכו לו כנמנטווט טו ומכנטי | constraints, and ethical issues. | | argumentation to listen to, | Analyze why some evidence is | research findings, and | | Evaluate the claims, evidence, | | compare, and evaluate competing | guestion and some is not. | specalation in an explanation. | | accepted explanations or solutions to | | merits. | Distinguish between opinions
and evidence in one's own | | | determine the merits of arguments. | | Scientists and engineers engage in — | explanations. | | | - 1 | | argumentation when investigating | Listen actively to arguments
to indicate agreement or | Respectfully provide and
receive critiques from peers | Respectfully provide and receive
critiques about one's | critiques on scientific arguments by | | a pnenomenon, resung a design | disagreement based on | about a proposed procedure, | explanations, procedures, models | probing reasoning and evidence and | | measurements, building data | evidence, and/or to retell the | explanation or model.by citing | and questions by citing relevant | challenging ideas and conclusions, | | models, and using evidence to | וומווו סווונט טו מוכ מושמוויכוני | specific questions. | responding to questions that elicit | perspectives, and determining what | | Evanuate callity. | | | pertinent elaboration and detail. | additional information is required to resolve contradictions. | | | Construct an argument with evidence to support a claim. | Construct and/or support an
argument with evidence, | Construct, use, and/or present an
oral and written argument | Construct, use, and/or present an
oral and written argument or | | | Ξ | data, and/or a model. | supported by empirical evidence | counter-arguments based on data | | | | Use data to evaluate claims | and scientific reasoning to | and evidence. | | | | | or a model for a phenomenon or a solution to a problem. | | ## NGSS Science and Engineering Practices | problem. | multiple solutions to a | Generate and/or compare | |---|------------------------------|---| | solution. | constraints of the design | they meet the criteria and | | solution that meets specific design criteria and constraints. Optimize performance of a design by prioritizing criteria, making tradeoffs, testing, revising, and retesting. | construct and/or implement a | engaging in the design cycle, to | | | | criteria, and tradeoff considerations. |